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Abstract—Cancelable biometric schemes generate secure
biometric templates by combining user specific tokens and
biometric data. The main objective is to create irreversible,
unlinkable, and revocable templates, with high accuracy
of comparison. In this paper, we cryptanalyze two recent
cancelable biometric schemes based on a particular locality
sensitive hashing function, index-of-max (IoM): Gaussian
Random Projection-IoM (GRP-IoM) and Uniformly Ran-
dom Permutation-IoM (URP-IoM). As originally proposed,
these schemes were claimed to be resistant against re-
versibility, authentication, and linkability attacks under the
stolen token scenario. We propose several attacks against
GRP-IoM and URP-IoM, and argue that both schemes are
severely vulnerable against authentication and linkability
attacks. We also propose better, but not yet practical,
reversibility attacks against GRP-IoM. The correctness and
practical impact of our attacks are verified over the same
dataset provided by the authors of these two schemes.

Index Terms—Cancelable biometrics; Locality sensitive
hashing; Index-of-Max hashing; Reversibility attack; Au-
thentication attack; Linkability attack

I. INTRODUCTION

Biometrics has been widely adopted in authentication

systems, border control mechanisms, financial services,

and healthcare applications. Biometric technologies are

very promising to provide user-friendly, efficient, and

secure solutions to practical problems. In a typical bio-

metric based authentication scheme, users register their

biometric-related information with the system, and they

are authenticated based on a similarity score calculated

from their enrolled biometric data and the fresh biomet-

ric they provide. As a consequence, service providers

need to manage biometric databases. This is somewhat

analogous to storing and managing user passwords in

a password-based authentication scheme. The main dif-

ference is that biometric data serves as a long-term

and unique personal identifier, whence categorized as

a highly sensitive and private data. This is not the

case for passwords as they can be chosen independent

of any user specific characteristics, a single user can

create an independent password per application, and

passwords can be revoked, changed, and renewed easily

at any time. As a result, managing biometric data in

applications is more challenging, and it requires more

care. As biometric-based technologies are deployed at a

larger scale, biometric databases become natural targets

in cyber attacks. In order to mitigate security and privacy

problems in the use of biometrics, several biometric

template protection methods have been proposed, in-

cluding cancelable biometrics, biometric cryptosystems

(e.g. fuzzy extractors), keyed biometrics (e.g. homomor-

phic encryption), and hybrid biometrics. In this paper, we

focus on cancelable biometrics (CB), and refer the reader

to two surveys [1], [2] for more details on biometric

template protection methods.

In CB, a biometric template is computed through

a process where the main inputs are biometric data

(e.g. biometric image, or the extracted feature vector)

of a user, and a user specific token (e.g. a random key,

seed, or a password). In a nutshell, templates can be

revoked, changed, and renewed by changing user specific

tokens. For the security of the system, it is important

that the template generation process is non-invertible

(irreversible): given the biometric template and/or the

token of a user, it should be computationally infeasible to

recover any information about the underlying biometric

data. Similarly, given a pair of biometric templates and

the corresponding tokens, it should be computationally

infeasible to distinguish whether the templates were

derived from the same user (unlinkability). We should

note that even though user specific tokens in CB may

be considered as secret, as part of a two-factor au-

thentication scheme, cryptanalysis of CB with stronger

adversarial models commonly assume that the attacker

knows both the biometric template and the token of a

user. This is a plausible assumption in practice because a
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user token may have low entropy (e.g. a weak password),

or it may just be compromised by an attacker. This

scenario is also known as the stolen-token scenario; see

[3].

CB was first propsed by Ratha et al. [4] for face

recognition. Since then, several CB schemes have been

proposed, including the Biohashing algorithm applied

on many modalities such as fingerprints [5], face [6],

and iris [7]. CB schemes offer several advantages such

as efficient implementation, high accuracy of compar-

ison, and revocability. On the other hand, security of

CB schemes, in general, are not well understood and

the security claims are rather based on some intuitive,

heuristic, and informal arguments, as opposed to being

based on formal arguments with rigorous proofs. As a

matter of fact, several attacks on the CB schemes have

been proposed; see [8], [9], [10], [11], [12] for attacks

on biohashing type schemes, and [13], [14] for attacks

on CB schemes using the Attack via Record Multiplicity

(ARM) technique.

More recently, Jin et al. [15] proposed two cancelable

biometric schemes based on a particular locality sensi-

tive hashing function, index-of-max (IoM) (see [16] for

details on IoM hashing): Gaussian Random Projection-

IoM (GRP-IoM) and Uniformly Random Permutation-

IoM (URP-IoM). It is shown in [15] that, for suitably

chosen parameters, GRP-IoM and URP-IoM are robust

against variation and noise in the measurement of data.

It is also claimed in [15] that, GRP-IoM and URP-

IoM are resistant against reversibility, authentication, and

linkability attacks under the stolen token scenario.

In this paper, we formalize some security notions

under the stolen token scenario and propose several

attacks against GRP-IoM and URP-IoM. We argue that

both schemes are severely vulnerable against authenti-

cation and linkability attacks. We also propose better,

but not yet practical, reversibility attacks for GRP-IoM.

We utilize linear and geometric programming methods

in our attacks. Linear programming has been previously

used in the cryptanalysis of other schemes; see [12].

The correctness and practical impact of our attacks are

verified over the same dataset provided by the authors

of these two schemes. In order to be more specific, we

state the security claims in [15] and our cryptanalysis

results as follows:

1) Reversibility attack: In a reversibility attack, an

adversary, who already has the knowledge of a

user’s specific token, and has at least one biometric

template of the same user, tries to recover a feature

vector, that corresponds to the user’s biometric

data.

Analysis in [15]: It is claimed in [15] that the

best template reversing strategy for an adversary

is to exhaustively search feature vectors. Based

on some entropy analysis of the feature vectors,

it is concluded in [15] that recovering the exact

feature vectors from their system implemented

over the FVC 2002 DB1 dataset requires 23588

operations for both GRP-IoM and URP-IoM; see

Section VII.A in [15]. In fact, the attack cost

in [15] was underestimated as (212)299 = 23588

because of underestimating 4636 as 212. A more

accurate analysis yields a cost of 4636299 ≈ 23641.

Our results: We propose a new reversibility attack

against GRP-IoM. The main idea is to reduce the

search space by guessing the sign of the com-

ponents of the feature vectors with high success

probability. Our analysis and experiments over the

FVC 2002 DB1 dataset suggest that recovering

GRP-IoM feature vectors now requires 23466 op-

erations. Even though our attack is not practical,

it reduces the previously estimated security level

for GRP-IoM by 3641 − 3433 = 208 bits from

3641-bit to 3433-bit. Furthermore, we relax the

exact reversibility notion to the nearby reversibility

notion. This relaxation is reasonable given the fact

that different measurements of the same user’s

biometric produce different feature vectors due

to the inherent noise in the measurements. Un-

der this relaxation, we propose successful attack

strategies against GRP-IoM. Currently, we do not

have any reversing attack strategy against URP-

IoM that works better than the naive exhaustive

search or random guessing strategies. For more

details, please see Section IV-B.

2) Authentication attack: In an authentication at-

tack, an adversary, who already has the knowledge

of a user’s specific token, and has at least one

biometric template of the same user, tries to gen-

erate a feature vector such that the adversary can

now use that feature vector and the stolen token

to be (falsely) authenticated by the system as a

legitimate user. Note that authentication attacks are

weaker than reversibility attacks because feature

vectors generated in the attacks are not required

to correspond to actual biometrics.

Analysis in [15]: The authors in [15] analyze

several authentication attack strategies (brute force,

record multiplicity, false acceptance, birthday)

against GRP-IoM and URP-IoM. In particular, the

analysis in [15] yields that authentication attacks

against GRP-IoM with parameters m = 300, q =
16, τ = 0.06, and URP-IoM with parameters
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m = 600, k = 128, τ = 0.11 require 242 and

2252 operations, respectively, when the underlying

dataset is FVC 2002 DB1; see Table V in [15].

Our results: We utilize linear and geometric pro-

gramming methods and propose new and practical

authentication attacks against both GRP-IoM and

URP-IoM. For example, we verify that our attacks

against GRP-IoM and URP-IoM (under the same

parameters and the dataset as above) run in the

order of seconds and can authenticate adversaries

successfully. We also show that the cancellability

property of both GRP-IoM and URP-IoM are

violated in the sense that adversaries can still be

(falsely) authenticated by the system even after

user templates are revoked and tokens are renewed.

For more details, please see Section IV-A and V-A.

3) Linkability attack: In a linkability attack, an

adversary, who is given a pair of biometric tem-

plates, tries to determine whether the templates

were generated from two distinct individuals or

from the same individual using two distinct tokens.

Analysis in [15]: Based on some experimen-

tal analysis of the pseudo-genuine and pseudo-

imposter score distributions, and the large overlap

between the two distributions, it is concluded in

[15] that an adversary cannot be successful in a

linkability attack against GRP-IoM and URP-IoM;

see Section VII C in [15].

Our results: Unlinkability claims in [15] are

limited in the sense that the analysis only takes into

account the attack strategies based on correlating

the similarity scores of given templates. Therefore,

the analysis in [15] does not rule out other, po-

tentially better, attack strategies. In our analysis,

we exploit partial reversibility of GRP-IoM and

URP-IoM, and propose successful attack strate-

gies (distinguishers) against both schemes. More

specifically, the distinguisher for GRP-IoM uses a

preimage finder along with a correlation metric,

that counts the number of identically signed com-

ponents in the preimages. As a result, our attack

can correctly link two templates 97 percent of

the time. The distinguisher for URP-IoM uses a

preimage finder along with the Pearson correlation

metric, and that can correctly link two templates

83 percent of the time. For more details, please

see Section VI.

Organization: The rest of this paper is organized

as follows. We provide some background information on

GRP-IoM and URP-IoM in Section II. In Section II, we

also formalize some of the concepts for a more rigorous

discussion and analysis of our attacks. We provide our

attack models and relevant definitions in Section III. Our

attacks against GRP-IoM and URP-IoM are explicitly

described and evaluated in Section IV, V, and VI. We

derive our conclusions in Section VII.

II. FORMALIZING CANCELABLE BIOMETRIC

SCHEMES

Biometric templates in GRP-IoM and URP-IoM are

constructed in two steps: (1) Feature extraction: A

feature vector is derived from a biometric image; and

(2) Transformation: A user specific secret is used to

transform the user’s feature vector to a template. In

this section, we present formal descriptions of these two

steps and show how GRP-IoM and URP-IoM can be

seen as concrete instantiations of our formal definitions.

Our formalization will later help us to describe security

notions, and to present our cryptanalysis of GRP-IoM

and URP-IoM in a rigorous manner.

A. Feature Extraction and Template Generation

In the following, we let (MA, DA) and (MB , DB)
be two metric spaces, where MA and MB represent the

feature space and template space, respectively; and DA

and DB are the respective distance functions.

Definition 1: A biometric feature extraction scheme is

a pair of deterministic polynomial time algorithms Π :=
(E, V ), where

• E is the feature extractor of the system, that takes

biometric data b as input, and returns a feature

vector x ∈ MA.

• V is the verifier of the system, that takes two feature

vectors x = E(b), x� = E(b�), and a threshold τA
as input, and returns True if DA(x, x

�) ≤ τA, and

returns False if DA(x, x
�) > τA.

Remark 1: V is not explicitly used in GRP-IoM and

URP-IoM. More specifically, after a feature vector x is

extracted from a biometric image b, a transformation is

applied to x and a biometric template is derived. There-

fore, the feature vector x is not used in the protocol.

The main reason that we introduce V and DA here is

to capture the notion of a vector x�, that is close to

the feature vector x. For example, the pair x and x�

may represent the feature vectors of the same individual

extracted from two different measurements b and b�; in

which case, one would expect V to return True for

relatively small values of τA. As a second example, x�

may be the feature vector constructed by an attacker

to reverse the biometric template of an individual with

biometric image b. In this case, one may measure the
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success of the attack as a function of τA, and the rate

of True values returned by V . A successful attack is

expected to result in higher return rates of True for

relatively small values of τA.

Remark 2: In this paper, we consider two different

methods to quantify the similarity between feature vec-

tors in the GRP-IoM and URP-IoM schemes. The first

one is the Euclidean distance, where one computes

d = DA(x, x
�) =

�

�

�

�

n
�

i=1

(xi − x�
i)2,

and the verifier V returns True if d ≤ τEuc, and returns

False if d > τEuc. We note that Euclidean distance is

commonly deployed in biometric systems. In the second

method, one computes

s = S(x, x�) =

�n

i=1 xi × x�
i

�n

i=1 x
2
i + x�2

i

,

and the verifier V returns True if s ≥ τSim, and returns

False if s < τSim. The second method is a similarity

score proposed in [17], and deployed in the GRP-IoM

and URP-IoM schemes in [15]. One can see the close

relation between the similarity score s and the Euclidean

distance d through the equation

s =
1

2

�

1−
d2

�n

i=1 x
2
i + x�2

i

�

.

In particular, the maximum value of s is 1/2, when x =
x�, or equivalently, when d = 0. One motivation for

using this second method is the improved accuracy of

the system. We refer the reader to [17] for details.

Definition 2: Let K be token (seed) space, representing

the set of tokens to be assigned to users. A cancelable

biometric scheme is a tuple of deterministic polynomial

time algorithms Ξ := (G, T ,V), where

• G is the secret parameter generator of the system,

that takes a token (seed) s ∈ K as input, and returns

a secret parameter set sp.

• T is the transformation of the system, that takes a

feature vector x ∈ MA, and the secret parameter

set sp as input, and returns a biometric template

u = T (sp, x) ∈ MB .

• V is the verifier of the system, that takes two

biometric templates u = T (sp, x), u� = T (sp�, x�),
and a threshold τB as input; and returns True if

DB(u, u
�) ≤ τB , and returns False if DB(u, u

�) >
τB .

B. GRP-IoM and URP-IoM Schemes

The feature extractor E, which is common for both

GRP-IoM and URP-IoM, takes fingerprint images as

input, and generates feature vectors of length 299, that

is MA = R
n with n = 299.

Let Ia = Z∩ [1, a] denote the set of integers from 1 to

a. In [15], GRP-IoM sets MB = (Iq)
m, and URP-IoM

sets MB = (Ik)
m, for some suitable parameters k, m,

and q. In the rest of this paper, we unify this notation

and use MB = (Ik)
m for both GRP-IoM and URP-IoM.

In both GRP-IoM and URP-IoM, the distance between

two templates, DB(u, u
�), is defined as the Hamming

distance between u and u�. Therefore, in the rest of this

paper, we use DH instead of DB .

Both GRP-IoM and URP-IoM use an Index-of-Max

operation, denoted IoM , in their verification algorithm

V . IoM(v) is the smallest index, at which v attains its

maximum value. The algorithms G and T for GRP-IoM

and URP-IoM significantly differ, and we explain them

in the following.

a) GRP-IoM Instantiation:

• G takes the seed s as input, and generates random

Gaussian n-by-k matrices Wi = [w1 · · ·wk], for

i = 1, . . . ,m. The column vectors of the matrices

are sampled as standard Gaussian vectors of length-

n: wj ←$N (0, In) for j = 1, . . . , k. As a result, the

secret parameter set sp consists of the sequence of

projections W1, . . . ,Wm.

• T takes the secret parameter set {W1, . . . ,Wm},

and a fingerprint feature vector x ∈ R
n as input,

and computes

1) v ← xWi,

2) ui ← IoM(v),

for i = 1, . . . ,m. The output of T is the biometric

template u = (u1, . . . , um) ∈ (Ik)
m.

• V takes two biometric templates u, u� ∈ (Ik)
m,

and a threshold 0 ≤ τ ≤ 1 as input; computes

d = DH(u�, u); and returns True if d/m ≤ 1− τ ,

and returns False if d/m > 1 − τ . Note that

τ represents the minimum rate of the number of

indices with the same entry in the pair of vectors

to be accepted as a genuine pair.

The GRP-based IoM Hashing is depicted Figure 1.

b) Concrete parameters: In [15], several experi-

ments are performed to select optimal parameters k and

m. More specifically, accuracy of the system is ana-

lyzed for k ∈ {2, 3, 5, 10, 50, 100, 150, 200, 250, 299},

and m ∈ {2, 5, 10, 50, 100, 150, 200, 250, 300}. It is

concluded that large m is necessary for better accuracy,

and that the effect of k on the accuracy is not significant

when m is sufficiently large. For example, changing

the configuration from (k,m) = (2, 300) to (k,m) =
(250, 300) changes the equal error rate (EER) of the

system from 0.26% to 0.24%, a minor improvement of
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x

/
n

/
n

/
n

Fig. 1. Transformation of the GRP-based IoM scheme.

0.02%. As a result, the parameter set (k,m) = (16, 300)
is commonly referred in the security and performance

analysis of GRP-IoM in [15] with τ ∈ {0.01, 0.06}; see

Table IV and Table V in [15]. For convenient comparison

of our results, we also use (k,m) = (16, 300) and

τ ∈ {0.01, 0.06} as the main reference point in our

security analysis in this paper.

c) URP-IoM Instantiation: Let Sn be the sym-

metric group of all permutations σ = (σ(1), . . . ,σ(n))
on (1, . . . , n). Let Sn,k = {σ = (σ(1), . . . ,σ(k)) :
σ ∈ Sn} denote the set of partial permutations for

k ≤ n. In other words, permutations in Sn,k are

obtained by restricting permutations in Sn to the first

k integers 1, 2, ..., k. For σ ∈ Sn,k and x = (x1, ..., xn),
we denote σ(x) = (xσ(1), ..., xσ(k)). As an example,

for n = 5 and k = 3, restricting the permutation

(3, 5, 1, 2, 4) ∈ S5 to S5,3 yields σ = (3, 5, 1) ∈ S5,3,

and we get σ((x1, x2, x3, x4, x5)) = (x3, x5, x1). Fi-

nally, the component-wise (Hadamard) product of two

vectors x = (x1, ..., xn) and y = (y1, ..., yn) is denoted

by x � y = (x1 · y1, ..., xn · yn). The secret parameter

generation, transformation, and verification operations in

URP-IoM are performed as follows:

• G takes the seed s as input, and generates

partial permutations Pij uniformly at random:

Pij ←$Sn,k for i = 1, . . . ,m, and j = 1, ..., p.

As a result, the secret parameter set sp con-

sists of the sequence of partial permutations

{(P11, . . . ,P1p), . . . , (Pm1, . . . ,Pmp)}.

• T takes the secret parameter set

{(P11, . . . ,P1p), . . . , (Pm1, . . . ,Pmp)}, and a

fingerprint feature vector x ∈ R
n as input, and

computes

1) vj ← Pij(x) for j = 1, . . . , p,

2) ui ← IoM(v1 � · · ·� vp),

for i = 1, ...,m. The output of T is the biometric

template u = (u1, . . . , um) ∈ (Ik)
m.

• V takes two biometric templates u, u� ∈ (Ik)
m,

and a threshold 0 ≤ τ ≤ 1 as input; computes

d = DH(u�, u); and returns True if d/m ≤ 1− τ ,

and returns False if d/m > 1 − τ . Note that

τ represents the minimum rate of the number of

indices with the same entry in the pair of vectors

to be accepted as a genuine pair.

An illustration of the URP-based IoM transformation

is given Figure 2.

d) Concrete parameters: In [15], several experi-

ments are performed to select optimal parameters k,

m, and p. It is reported that, the best performance

over the FVC 2002 DB1 dataset is achieved when

(k,m, p) = (128, 600, 2) and τ = 0.11. This parameter

set is also referred in the security and performance

analysis of URP-IoM in [15]; see Table V in [15].

For convenient comparison of our results, we also use

(k,m, p) = (128, 600, 2) and τ = 0.11 as the main

reference point in our security analysis in this paper.

P11
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P22
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Pm2

· · ·

· · ·

. IoM u1/
k

/
k

/
1

. IoM u2/
k

/
k

/
1

. IoM um/
k

/
k

/
1

· · ·

/
k

/
k

/
k

x1

x2

x3

xn

...

x

/
n

/
n

/
n

/
n

/
n

/
n

Fig. 2. Transformation of the URP-based IoM scheme for p = 2.

III. STOLEN TOKEN ATTACK MODELS

Let U be the set of users of the biometric system. We

identify a user with its biometric characteristic, and de-

fine a function BC(·) that takes a biometric characteristic
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usr ∈ U as input, and outputs a digital representation of

biometric data b; for instance, the scan of a fingerprint.

Note that for two different computations of b = BC(usr)
and b� = BC(usr) (e.g. at different times, or different

devices), we may have b �= b� due to the inherent noise in

the measurement of biometric data. Therefore, we model

BC(·) as a probabilistic polynomial time function. We

also allow BC(usr1) = BC(usr2) for usr1 �= usr2 due

to the error rates of recognition systems. In the following,

we use x←$M to indicate that x is chosen from the set

M uniformly at random.

A. Reversibility attacks

Let x ∈ MA be a feature vector, and let u =
Ξ.T (sp, x) ∈ MB be the template generated from x
and the secret parameter set sp. In a reversibility attack,

an adversary is given u, sp, and a threshold value τA,

and the adversary tries to find a feature vector x∗ ∈ MA

such that x∗ is exactly the same as x, or x∗ is close to

x with respect to the distance function over MA and

the threshold value τA. In this case, we say that x∗

is a τA-nearby-feature preimage (or simply a nearby-

feature preimage, when τA is clear from the context) of

the template u. More formally, we have the following

definition.

Definition 3: Let x ∈ MA be a feature vector, and

u = Ξ.T (sp, x) ∈ MB for some secret parameter

set sp. Let τA be a threshold value. A nearby-feature

preimage of u with respect to sp is a feature vector x∗

such that Π.V (x, x∗, τA) = True.

As a result, an adversary A in a reversibility attack

can be modelled as an algorithm that takes sp and u =

Ξ.T (sp, x) as input, and that outputs x∗ = A(sp, u) ∈
MA. We say that the adversary A is successful, if x∗ is

a nearby-feature preimage of u. More formally, we have

the following definition.

Definition 4: Let Ξ be a cancelable biometric protec-

tion scheme and A an adversary for a nearby-feature

preimage attack. The success rate of A, denoted by

RateRev
A , is defined as:

Pr























Π.V (x, x∗, τA) = True

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

usr ←$U ; s←$K;

b ← BC(usr);

x ← Π.E(b);

sp ← Ξ.G(s);

u ← Ξ.T (sp, x);

x∗ ← A(sp, u);























.

Note that an adversary can follow a naive strategy

which consists in sampling a user usr∗ from U and

returning x∗ = BC(usr∗). Under this strategy, the

adversary would be expected to succeed with probability

FMR(τA), which is the false accept rate of the system

with respect to U and τA as the threshold value for the

comparison of the pairs of feature vectors. A weakness

of the scheme, with respect to the reversibility notion,

would require better attack strategies, and this motivates

the following definition.

Definition 5: The protection scheme Ξ is said to be

reversible with advantage AdvRev(A), if there exists

an adversary A such that |RateRev
A − FMR(τA)| ≥

AdvRev(A). If AdvRev(A) is negligible for all A, then

we say that Ξ is irreversible in the stolen token scenario.

In particular, a protection scheme Ξ is irreversible

in the stolen token scenario if, the success rate of any

adversary A is not significantly better than the success

rate of the strategy of drawing x∗ randomly from MA.

Remark 3: Definitions 4 and 5 can be generalized to

the case where the pair (token, template) is renewed N
times. The adversary thus takes advantage of N pairs of

(token, template), with N > 1.

B. Authentication attacks

Let x ∈ MA be a feature vector, and let u =
Ξ.T (sp, x) ∈ MB be the template generated from x and

the secret parameter set sp. In an authentication attack,

an adversary is given u, sp, and a threshold value τB ,

and the adversary tries to find a feature vector x∗ ∈ MA

such that for u∗ = Ξ.T (sp, x∗), u∗ is exactly the same

as u, or u∗ is close to u with respect to the distance

function over MB and the threshold value τB . In this

case, we say that x∗ is a τB-nearby-template preimage

(or simply a nearby-template preimage, when τB is clear

from the context) of the template u. More formally, we

have the following definition.

Definition 6: Let x ∈ MA be a feature vector, and

u = Ξ.T (sp, x) ∈ MB for some secret parameter

set sp. Let τB be a threshold value. A nearby-template

preimage of u with respect to sp is a feature vector

x∗ such that u∗ = Ξ.T (sp, x∗) and Ξ.V(u, u∗, τB) =
True.

As a result, an adversary A in an authentication attack

can be modelled as an algorithm that takes sp and u =

Ξ.T (sp, x) as input, and that outputs x∗ = A(sp, u) ∈
MA. We say that the adversary A is successful if x∗

is a nearby-template preimage of u. More formally, we

have the following definition.

Definition 7: Let Ξ be a cancelable biometric protec-

tion scheme and A an adversary for finding a nearby-

template preimage. The success rate of A, denoted by

6



RateAuth
A , is defined as:
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
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Ξ.V(u, u∗, τB) = True

�

�

�

�

�

�
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�

�

�

�

�

usr ←$U ; s←$K;

b ← BC(usr);

x ← Π.E(b);

sp ← Ξ.G(s);

u ← Ξ.T (sp, x);

x∗ ← A(sp, u);

u∗ ← Ξ.T (sp, x∗);



























.

Note that an adversary can follow the aforementioned

naive strategy. Under this strategy, the adversary would

be expected to succeed with probability FMR(τB),
which is the false accept rate of the system with respect

to U and τB as the threshold value for the comparison

of the pairs of templates. This strategy is also commonly

known as the false match (or acceptance) rate attack in

the literature. A weakness of the scheme, with respect

to the false authentication notion, would require better

attack strategies, and this motivates the following defi-

nition.

Definition 8: The protection scheme Ξ is said to

have false authentication with advantage AdvAuth(A)
property, if there exists an adversary A such that

|RateAuth
A −FMR(τB)| ≥ AdvAuth(A). If AdvAuth(A)

is negligible for all A, then we say that Ξ does not

have false authentication property under the stolen token

scenario.

In particular, a protection scheme Ξ does not have

false authentication property under the stolen token

scenario, if the success rate of any adversary A is not

significantly better than the success rate of the strategy

of drawing x∗ randomly from MA; or in other words,

the success rate of any attack is bounded by the false

match rate of the system.

Now, suppose that an adversary knows the secret

parameter set sp of a user (usr), and the template

u = Ξ.T (sp, x) of the user, where x = Π.E(BC(usr)).
At this point, the user may renew her token, or register

to another system with a new token and a freshly

acquired feature vector. Suppose now that the adversary

knows the user’s new secret parameter set sp�, but

the adversary does not know the user’s new template

u� = Ξ.T (sp�, x�). In such a scenario, the adversary

would try to compute a nearby-template preimage x∗ of

the template u� = Ξ.T (sp�, x�), given sp, u, and sp�. In-

formally, we call such a nearby-template preimage x∗ as

a long-lived nearby-template preimage. More formally,

we have the following definition.

Definition 9: Let Ξ be a cancelable biometric pro-

tection scheme and A an adversary for finding a long-

lived nearby-template preimage. The success rate of A,

denoted by RateAuth-��
A , is defined as:
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Ξ.V(u�, u�∗, τB) = True
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usr ←$U ;

b ← BC(usr);

b� ← BC(usr);

x ← Π.E(b);

x� ← Π.E(b�);

s←$K; s� ←$K;

sp ← Ξ.G(s);

sp� ← Ξ.G(s�);

u ← Ξ.T (sp, x);

u� ← Ξ.T (sp�, x�);

x∗ ← A(sp, sp�, u);

u�∗ ← Ξ.T (sp�, x∗);


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
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.

Again, an adversary can follow the aforementioned

naive strategy. Under this strategy, the adversary would

be expected to succeed with probability FMR(τB), as

explained in the previous authentication attack model. A

weakness of the scheme, with respect to the long-lived

false authentication notion, would require better attack

strategies, and this motivates the following definition.

Definition 10: The protection scheme Ξ is said

to have long-lived false authentication with advantage

AdvAuth−��(A) property, if there exists an adversary A
such that |RateAuth−��

A
−FMR(τB)| ≥ AdvAuth−��(A).

If AdvAuth−��(A) is negligible for all A, then we say

that Ξ does not have long-lived false authentication

property under the stolen token scenario.

In other words, a protection scheme Ξ is vulnerable

to long-lived nearby-template preimage attacks if an

adversary, who knows a user’s previous token and tem-

plate pair, and the user’s renewed token, can construct

a feature vector that can be (falsely) authenticated by

the system with some probability greater than the false

accept rate of the system.

Remark 4: We should emphasize that in finding long-

lived nearby-template preimages, we allow the adversary

to know sp, u, and sp�, but we do not allow the adversary

to know u�. Therefore, the finding a long-lived nearby-

template preimage problem is not easier than the finding

a nearby-template preimage problem. This observation

also makes sense in practice as explained in the follow-

ing. Consider an adversary, who has access to an efficient

algorithm for finding nearby-template preimages. Such

an adversary can be blocked by revoking biometric

templates and renewing tokens. On the other hand, an

adversary, who has access to an efficient algorithm for

finding long-lived nearby-template preimages, can still

7



be (falsely) authenticated by the system even after user

templates are revoked and tokens are renewed. In other

words, a successful algorithm for finding long-lived

nearby-template preimages would defeat the purpose of

cancellability feature of a system.

Remark 5: Definitions 9 and 10 can be generalized

to the case where the pair (token, template) is renewed

N times. The adversary thus takes advantage of the N
first leaked pairs of (token, template), along with the

(N + 1)’th token.

C. Linkability attacks

Let x, x� ∈ MA be two feature vectors. Let u =
Ξ.T (sp, x) ∈ MB and u� = Ξ.T (sp�, x�) ∈ MB be

two templates generated from x and x�, and the secret

parameters set sp and sp�. In a linkability attack, an

adversary is given sp, sp�, u, and u�, and the adversary

tries to find out whether x and x� are derived from the

same user. As a result, an adversary A in a linkability

attack can be modelled as an algorithm that takes sp,

sp�, u, and u� as input, and that outputs 0 or 1, where

the output 1 indicates that the feature vectors x and

x� are extracted from the same user, and the output 0
indicates that the feature vectors x and x� are extracted

from two different users. We say that the adversary A is

successful, if his conclusion (whether the feature vectors

are extracted from the same user) is indeed correct. More

formally, we have the following definition.

Definition 11: Let Ξ be a cancelable biometric

protection scheme and A an adversary for a linkability

attack. The success rate of A, denoted by RateLink
A , is

defined as:
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usr ←$U ;

b ← BC(usr); x ← Π.E(b);

s←$K; sp ← Ξ.G(s);

s� ←$K; sp� ← Ξ.G(s�);

c←$ {0, 1};

usr� ← usr if c = 0;

usr� ←$U \ usr if c = 1;

b� ←$BC(usr�); x� ← Π.E(b�);

u ← Ξ.T (sp, x);u� ← Ξ.T (sp�, x�);

c� ← A(sp, u, sp�, u�);
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.

Note that an adversary can follow a naive strategy

by simply sampling a value from {0, 1} uniformly at

random. Under this strategy, the adversary would be

expected to succeed with probability 1/2. This strategy

is also known as the guessing attack in the literature. A

weakness of the scheme, with respect to the linkability

notion, would require better attack strategies, and this

motivates the following definition.

Definition 12: The protection scheme Ξ is said to be

linkable (distinguishable) with advantage AdvLink(A),
if there exists an adversary A such that |RateLink

A −
1/2| ≥ AdvLink(A). If AdvLink(A) is negligible for all

A, then we say that Ξ is unlinkable (indistinguishable)

under the stolen token scenario.

We should note that our linkability definitions are

aligned with the definitions in [18]. In particular, the

gradual linkability (e.g. fully linkable, linkable to a

certain degree) concepts as described in [18] are captured

through measuring the success rate of an adversary in our

framework.

IV. ATTACKS ON GRP-IOM

In this section, we propose some concrete attack

strategies against GRP-IoM, and evaluate the impact

of our attacks through our implementation over one of

the datasets as provided in [15]. More specifically, we

use the dataset of features extracted from the finger-

print images of FVC2002-DB1 as in [15]. This dataset

contains a total of 500 samples: 5 fixed-length feature

vectors per user; for a total of 100 users. A feature

vector is derived from a fingerprint image in two steps:

minutiae descriptor extraction (MCC), followed by a

kernel learning-based transformation; see [15], [17] for

more details.

As mentioned before, for convenient comparison of

our results, we use the GRP-IoM paramaters n = 299,

(k,m) = (16, 300) and τ ∈ {0.01, 0.06} as the main

reference point in our security analysis, because these

parameters are commonly referred in the security and

performance analysis of GRP-IoM; see Table IV and

Table V in [15].

A. Authentication attacks on GRP-IoM

Finding nearby-template preimages: As before,

let x ∈ MA = R
n be a feature vector, and let

u = Ξ.T (sp, x) ∈ MB = R
m be the template generated

from x and the secret parameter set sp. Assume that

an adversary A knows u and sp. In order to find a

nearby-template preimage vector x∗ ∈ R
n, the adversary

proceeds as follows. Since A knows sp, A can recover

the set of Gaussian random projections in GRP-IoM:

A = {Wi ∈ R
k×n, 1 ≤ i ≤ m} Let the rows of

Wi be denoted by Wi,1, Wi,2, ..., Wi,k. Let �Wi,j , x�
denote the inner product between the vectors Wi,j and

x. Recall that the template produced by GRP-IoM is a
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vector u = (u1, u2, . . . , um) ∈ (Zk)
m comprised of the

indices of maximum, i.e.

ui = argmax
j s.t. 1≤j≤k

�Wi,j , x� for i = 1 . . .m,

from which A recovers the set of inequalities

{�Wi,j , x
�� ≤ �Wi,ui

, x��}1≤i≤m,1≤j≤k. (1)

As a result, A obtains (k − 1)m inequalities in n
unknowns, and sets x∗ to be one of the (arbitrary)

solutions of this system (possibly imposing |x∗
i | ≤ c for

some c positive, for 1 ≤ i ≤ m). By the construction of

x∗, we must have u∗ = Ξ.T (sp, x∗) = Ξ.T (sp, x) = u,

and so Ξ.V(u, u∗, τB) = True, for all τB . In other

words, A is expected to get (falsely) authenticated by the

server with 100%, or equivalently, RateAuth
A = 100%.

The expected success rate of our attack has been veri-

fied in our python implementation using the CVXOPT

library [19] on a computer running on Ubuntu 17.10 with

Xfce environment, with a Core i7 4790k 4Ghz processor,

8GB of RAM, and a SATA SSD of 512GB. The attack

runs in the order of seconds for the parameters n = 299,

(k,m) = (16, 300) and τ ∈ {0.01, 0.06}.

Finding long-lived nearby-template preimages:

Let x and x� be two feature vectors of the same user,

and sp and sp� two secret parameters sets. Let u =
Ξ.T (sp, x) and u� = Ξ.T (sp�, x�). In finding a long-

lived nearby-template preimage x∗ of u�, we assume

that the adversary A knows u, sp, sp�. In our proposed

attack, A follows the previously described strategy to

find a nearby-template preimage x∗ based on u and sp,

and presents this x∗ as a candidate for nearby-template

preimage of u�.

We evaluate this attack by computing both the average

and the minimum comparison score, over one hundred

users, between u�∗ = Ξ.T (sp�, x∗) and the re-enrolled

genuine template u� = Ξ.T (sp�, x�). Our experiments

yield 44.6% as the average rate of the number of indices

with the same entry in u� and u�∗; and 17.7% as the

minimum rate of the number of indices with the same

entry in u� and u�∗. Therefore, given the comparison

score thresholds of τ ∈ {0.01, 0.06} as set in [15],

we expect that the success rate of the adversary to

be RateAuth−��

A
= 100%. The above attack strategies

show that GRP-IoM is severely vulnerable against au-

thentication attacks under the stolen token and template

attack model, and also show that adversaries cannot be

prevented by renewing templates or tokens. In other

words, the cancellability feature of GRP-IoM is violated

under the stolen token and template scenario.

Optimizing authentication attacks: Next, we ex-

plore whether the attacks can be optimized when a user

leaks several token and template pairs. More specifically,

assume that an adversary captures N token, template

pairs (spi, u
(i)), for 1 ≤ i ≤ N , derived from distinct

feature vectors of the same user. In practice, templates

are derived from feature vectors extracted from the noisy

biometric measurements. Assume further that the adver-

sary is in the possession of another token spN+1, but

not the template u(N+1), from the (N+1)’st enrollment

of the user.

Let us denote by Aspi the sets of matrices derived

from the token spi. The adversary can either keep all cor-

responding sets of inequalities, or selectively choose the

inequalities of the system to decrease both the memory

usage and the running time to refine the solution. In the

following, we denote by AGRP

AC
the attack consisting of

using all the constraints, and by AGRP

SC
the attack where

the constraints are selected. The attack AGRP

SC
proceeds

as follows:

1) First, compute an approximated solution x� from

the pair (u(1), Asp1), and initialize a set of con-

straints

S =











�Wsp1

i,j −Wsp1

i,u
(1)
i

, x� ≤ 0

�

�

�

�

�

�

�

1 ≤ i ≤ m

1 ≤ j ≤ k

j �= usp1

i











.

2) For b = 2 . . . N , the following computations are

performed:

a) u� = (u�
1, . . . , u

�
m) where u�

i =
argmaxl s.t. 1≤l≤k�W

spb

i,l , x�� for i = 1 . . .m.

b) d = u� − u(b) = (d1, . . . , dm), a vector of

differences.

c) The set S of constraints is updated as

S∪























�Wspb

i,j −Wspb

i,u
(b)
i

, x� ≤ 0

�

�

�

�

�

�

�

�

�

�

di �= 0

1 ≤ i ≤ m

1 ≤ j ≤ k

j �= u
(b)
i























.

d) x� is updated subject to the constraints of S.

3) Return x�.

Recall that the dataset in [15] contains 5 samples

(genuine feature vectors) for each user. Therefore, in

our experiments, we consider 2 ≤ N ≤ 4. We use

linear programming solver of the SciPy optimization

library in Python. The linprog function is parameter-

ized with the ’interior-point’ solver method, with upper

bounds (1) and lower bounds (-1) for the components

of seeked solutions, and without objective function. The

experiments yield the results of Table I and Table II,

showing an improvement of the comparison scores over
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the previous attacks (for N = 1). Table I reports on the

comparison scores obtained by an attacker AGRP
AC ; and

Table II reports on the comparison scores obtained by an

attacker AGRP
SC , optimizing the number of constraints.

TABLE I
COMPARISON SCORES USING AGRP

AC
.

N 2 3 4

Constr. Number
(N · (k − 1) ·m+ 2 · n)

9,598 14,098 18,598

GRP Comp. Score – Min (%) 27.7 33 38

GRP Comp. Score – Avg (%) 50.6 53.4 56

TABLE II
COMPARISON SCORES USING AGRP

SC
.

N 2 3 4

Constr. Number – Avg 8,379 8,930 9,449

GRP Comp. Score – Min (%) 29.3 29.7 38.3

GRP Comp. Score – Avg (%) 48.4 50.6 52.8

B. Reversibility attacks on GRP-IoM

In authentication attacks in the previous section, ad-

versarial strategies focus on finding nearby-template

preimages x∗, that are not required to be close to the

actual feature vector x. In a reversibility attack, an

adversary finds a nearby-feature preimage x∗, and the

quality of the attack is measured by the closeness of x∗

to x.

Exact reversibility: The best case for an attacker

is to have x∗ = x. In [15], it is argued that the best

strategy for an attacker to find x∗ = x is to exhaustively

search (guess) the components of x. Given the feature

vectors extracted from FVC2002-DB1, it is reported

in [15] that the minimum and maximum values of

the feature vector components are −0.2504 and 0.2132
respectively. Therefore, the search space for a feature

component consists of 4636 possibilities, including the

positive and negative signed components. Moreover, the

fetaure vectors in GRP-IoM are of length 299. Therefore,

it is concluded in [15] that the attack requires to exhaust

a search space of size 4636299 ≈ 23641. In the following,

we propose a better attack strategy to recover x. The

main idea is to guess the sign of the components of the

feature vector, and shrink the search space accordingly.

Given a token, template pair of a user, the adversary

computes a nearby-template preimage x∗, and guesses

the sign of xi as the same as the sign of x∗
i . If all

the signs were correctly guessed by the adversary, then

the size of the search space would be reduced from

4636299 ≈ 23641 to (4636/2)299 ≈ 23342. However,

the adversary may guess the signs incorrectly. Based

on our experiments, where we compare the sign of the

components of the preimage vectors x∗ and the actual

feature vectors x, we estimate that the probabilty of

guessing the sign correctly per component is 242/299.

Therefore, we estimate the size of the search space for x
as (4636/2)299 ·(299/242)299 ≈ 23433. Even though our

attack is not practical, it reduces the previously estimated

security level for GRP-IoM by 3641− 3433 = 208 bits

from 3641-bit to 3433-bit.

Nearby reversibility: Now, we analyze some at-

tack strategies for finding a nearby-feature preimage of

a template under the stolen token attack scenario. The

adversary proceeds similarly as in the authentication

attacks, except that now we also include some objective

functions, and solve a linearly constrained quadratic

optimization problem. We consider three cases for which

the objective functions are given as follows:

1) min �x�22.

2) min �x − vm�22 where vm is the average feature

vector in the database provided in [15]. For our

experiments, one sample per user is attacked, i.e.

one hundred linear programs are solved.

3) min �x−vr�
2
2 where vr is a feature vector derived

from a fingerprint of the adversary. For our exper-

iments, vr is picked at random among the samples

of one user. These samples are then removed from

the database. Among the remaining 99×5 samples,

one sample per user is attacked, for a total of 99
program solvings.

In our experiments, we use Python and the CVX-

OPT package [19] which provides linearly constrained

quadratic programming solvers. We measure the success

rate of this attack strategy RaterevA , and report its advan-

tage over the false accept rate of the system. We compute

two reference false accept rate values for the dataset

provided in [15], one with respect to the Euclidean

distance, and one with respect to the similarity measure

as described in Remark 2. We compute FMR(τEuc) =
FNMR(τEuc) = 0.03 using the Euclidean distance, with

the threshold τEuc = 0.33. We estimate FMR(τSim) =
FMR(τSim) = 0.002 using the similarity measure, with

the threshold τSim = 0.13. Our attacks are evaluated

in three cases: the cases 1, 2 and 3 when an objective

function is used in the order as mentioned above, and

the case none when no optimization function is used.

Results of our experiments, as summarized in Table III

and Table IV, show that in most cases the solving of an
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optimization problem leads to a RaterevA significantly

greater that FMR(τA). We then conclude that GRP-

IoM is reversible with a single complete leak, both

considering the Euclidean distance and the dedicated

similarity score of [17].

TABLE III
SUCCESS RATE OF THE REVERSIBILITY ATTACK AGAINST

GRP-IOM UNDER SINGLE STOLEN TOKEN AND TEMPLATE ATTACK;
USING THE EUCLIDEAN DISTANCE AND FOR DIFFERENT VALUES OF

τA .

Objective Function (case) none 1 2 3

Raterev
A

, τEuc = 0.33 2 63 77 98

Raterev
A

, τEuc = 0.2 0 3 4 27.2

Raterev
A

, τEuc = 0.15 0 0 0 5

Raterev
A

, τEuc = 0.1 0 0 0 0

TABLE IV
SUCCESS RATE OF THE REVERSIBILITY ATTACK AGAINST

GRP-IOM UNDER SINGLE STOLEN TOKEN AND TEMPLATE ATTACK;
USING THE SIMILARITY MEASURE WITH THE THRESHOLD

τSim = 0.13.

Objective Function (case) none 1 2 3

Raterev
A

, τSim = 0.13 100 0 0 100

Table III also shows that an adversary’s success rate

drops when Euclidean distance threshold τEuc is lowered

from 0.33 in the system, as expected. In Table IV, we

perform a similar analysis when the similarity measure

is used with the threshold τSim = 0.13. We observe that

the best adversarial success rates are obtained when no

objective function is used, or the objective function in

case 3 is used. The effect of multiple stolen token and

template pairs is evaluated for the previously mentioned

four cases, the results of which are presented in the

Table V and VI. When no function is optimized, we

see the success rate is increasing with the number of

stolen pairs, up to 3 pairs, after which it decreases. This

decrease may be due to the variability of the feature

vector components at each re-enrollement of the user,

i.e. when a renewal of the token is required. Since

each system of constraints that we add to the linear

program corresponds to a re-enrollment, the amount of

errors in the constants of the inequalities may exceed

the benefit of having more inequalities. Finally, when an

objective function is added in the program solving, our

experiments show there is no value gained with multiple

leaks. We should note that our experiments are rather

limited due to the sample size. For better and more

definitive conclusions, one would need to perform more

experiments.

TABLE V
SUCCESS RATE OF THE REVERSIBILITY ATTACK AGAINST

GRP-IOM UNDER N STOLEN TOKEN AND TEMPLATE ATTACKS

WHEN NO OPTIMIZATION IS PERFORMED (CASE none), USING THE

EUCLIDEAN DISTANCE AND FOR DIFFERENT VALUES OF τA .

N 1 2 3 4 5

Raterev
A

, τEuc = 0.33 2 43 68 63 62

Raterev
A

, τEuc = 0.2 0 3 3 3 3

Raterev
A

, τEuc = 0.15 0 0 0 0 0

TABLE VI
SUCCESS RATE OF THE REVERSIBILITY ATTACK AGAINST

GRP-IOM UNDER N STOLEN TOKEN AND TEMPLATE ATTACKS

WHEN OPTIMIZATION IS PERFORMED (CASE 2), USING THE

EUCLIDEAN DISTANCE AND FOR DIFFERENT VALUES OF τA .

N 1 2 3 4 5

Raterev
A

, τEuc = 0.33 77 71 69 69 69

Raterev
A

, τEuc = 0.2 4 3 3 3 3

Raterev
A

, τEuc = 0.15 0 0 0 0 0

V. ATTACKS ON URP-IOM

In this section, we propose some concrete attack

strategies against URP-IoM, and evaluate the impact of

our attacks through our implementation over one of the

datasets as provided in [15]. More specifically, we use

the dataset of features extracted from the fingerprint

images of FVC2002-DB1 as in [15]. This dataset

contains a total of 500 samples: 5 samples per user for

100 users.

As mentioned before, for convenient comparison of

our results, we use the parameter set n = 299,

(k,m, p) = (128, 600, 2) and τ = 0.11 as the main

reference point in our security analysis, because these

parameters are commonly referred in the security and

performance analysis of URP-IoM in [15]; see Table V

in [15].

A. Authentication attacks on URP-IoM

Finding nearby-template preimages: We let

x, u, sp as before, and assume that an adversary A knows

u and sp. In order to find a nearby-template preimage

vector x∗ ∈ R
n, the adversary proceeds as follows. Since

A knows sp, A can recover the set of permutations

A = {σ1,i,σ2,i ∈ Sn,k, 1 ≤ i ≤ m} in URP-IoM.

The template u = (u1, u2, . . . , um) ∈ (Zk)
m is a vector

comprised of the indices of maximum, i.e.

ui = argmax
l s.t. 1≤l≤k

{xσ1,i(l) · xσ2,i(l)} for i = 1 . . .m,
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where k is the window size, from which the adversary

can recover the set of inequalities











xσ1,i(j) · xσ2,i(j) ≤ xσ1,i(ui) · xσ2,i(ui)

�

�

�

�

�

�

�

1 ≤ i ≤ m

1 ≤ j ≤ k

j �= ui











.

Each of these inequalities can be transformed into

linear constraints by taking the logarithm of the both

sides. The corresponding set of m × (k − 1) linear

constraints can be given as follows:











log xσ1,i(j) + log xσ2,i(j)

−
�

log xσ1,i(ui) + log xσ2,i(ui)

�

≤ 0

�

�

�

�

�

�

�

1 ≤ i ≤ m

1 ≤ j ≤ k

j �= ui











.

The logarithm adds a new set of n constraints, namely

xi > 0, 1 ≤ i ≤ n where n is the size of the feature

vector. A finds a solution c∗ of this system, and sets x∗

such that xi
∗ = exp(ci

∗), i = 1, ..., n, to be one of the

(arbitrary) solutions of this system. By the construction

of x∗, we must have u∗ = Ξ.T (sp, x∗) = Ξ.T (sp, x) =
u, and so Ξ.V(u, u∗, τB) = True, for all τB . In other

words, A is expected to get (falsely) authenticated by the

server with 100%, or equivalently, RateAuth
A = 100%.

The expected success rate of our attack has been

verified in our python implementation using the cvxopt

library [19] on a computer running on Ubuntu 17.10 with

xfce environment, with a Core i7 4790k 4Ghz processor,

8GB of RAM, and a SATA SSD of 512GB. The attack

runs in the order of seconds for the parameters n = 299,

(k,m, p) = (128, 600, 2) and τ = 0.11. We should

note that, if an adversary captures more than one token

and template pair, then additional constraints can further

optimize the attack as previously discussed for GRP-

IoM.

Finding long-lived nearby-template preimages:

We let x, x�, u, u�, sp, sp� be as before, and assume

that an adversary A knows u, sp, sp�. In our proposed

attack, A follows the previously described strategy to

find a nearby-template preimage x∗ based on u and sp,

and presents this x∗ as a candidate for nearby-template

preimage of u�.

We evaluate this attack by computing both the average

and the minimum comparison score, over one hundred

users, between u�∗ = Ξ.T (sp�, x∗) and the re-enrolled

genuine template u� = Ξ.T (sp�, x�). Our experiments

yield 25.2% as the average rate of the number of

indices with the same entry in u� and u�∗; and 3%
as the minimum rate of the number of indices with

the same entry in u� and u�∗. Therefore, given the

comparison score thresholds of τ = 0.11 as set in [15],

we expect that the success rate of the adversary to be

RateAuth−��

A
= 100%, on average. The above attack

strategies show that URP-IoM is severely vulnerable

against authentication attacks under the stolen token and

template attack model, and also show that adversaries

cannot be prevented by renewing templates or tokens.

In other words, the cancellability feature of GRP-IoM is

violated under the stolen token and template scenario.

Optimizing authentication attacks: Similar to

our GRP-IoM analysis, we now explore whether the

attacks can be optimized when a user leaks several token

and template pairs. More specifically, assume that an

adversary captures N token, template pairs (spi, u
(i)),

for 1 ≤ i ≤ N , derived from distinct feature vectors

of the same user. Assume further that the adversary is

in the possession of another token spN+1, but not the

template u(N+1), from the (N + 1)’st enrollment of the

user.

Table VII reports the values when the number of leaks

increases, and shows that 2 stolen token and template

pairs are sufficient to yield RateAuth−��

A
= 100% when

τ = 0.11.

TABLE VII
COMPARISON SCORES USING AURP

AC
.

N 2 3 4

Constraint Number
(N · (k − 1) ·m+ 2 · n)

152,998 229,198 305,398

URP Comp. Score – Min (%) 12.8 14.7 14.8

URP Comp. Score – Avg (%) 28.2 29.6 31.3

VI. LINKABILITY ATTACKS ON GRP-IOM AND

URP-IOM

Recall that an adversary A in a linkability attack can

be modelled as an algorithm that takes sp, sp�, u, and

u� as input, and that outputs 0 or 1, where the output 1
indicates that the feature vectors x and x� are extracted

from the same user, and the output 0 indicates that the

feature vectors x and x� are extracted from two different

users.

Authentication attacks on GRP-IoM and URP-IoM

only return a feature vector that enables successful (false)

authentication. Reversibility attacks on GRP-IoM allows

to construct a nearby-feature preimage vectors, that are

somewhat close to the actual feature vector. For example,

in the exact reversibility attack on GRP-IoM, we were

able to guess the sign of a component of the actual

feature vector with estimated probability of 242/299.

In our linkability attack on GRP-IoM, we utilize such

12



sign guessing, and partial reversibility results. However,

we could not obtain nearby-feature preimage vectors

in URP-IoM successfully, mainly because, by the use

of geometric programming, all of the components in

a preimage must be non-negative, whereas an actual

feature vector component can well be negative. As a

result, the linkability attack techniques for GRP-IoM do

not immediately apply to attack URP-IoM. However, we

show that it is still possible to successfully link URP-

IoM templates.

a) An attack on GRP-IoM: Given sp, sp�, u, and u�,

the adversary computes nearby-feature preimage vectors

x∗ and x�∗ as explained before. For some decision

threshold value tlink, the adversary computes β =
β(x∗, x�∗), where β is the number of indices for which

x∗ and x�∗ have exactly the same sign. Finally, the

adversary outputs 1, if β ≥ tlink, indicating that the

feature vectors x and x� are extracted from the same

user. Otherwise, if β < tlink, the adversary outputs 0,

indicating that the feature vectors x and x� are extracted

from two different users.

In our experiments, we created 500 nearby-feature

preimages, derived from the 500 templates along with

their 500 seeds. Recall that the templates are the trans-

formations (using distinct random seeds) of the feature

vectors provided by the authors of IoM hashing [15].

Using our dataset of nearby-feature preimages (estimated

feature vectors) produced by our attack, we estimate the

success rate of our attack using the following script:

1) c1, c2 ← 0
2) for i between 1 and N :

a) pick at random two nearby-feature preimage

vectors x∗ and x�∗ from the same individual

(x∗ �= x�∗).

b) if β(x∗, x�∗) ≥ tlink : c1 ← c1 + 1.

c) pick at random two nearby-feature preimage

vectors x∗ and x�∗ from two different indi-

viduals.

d) if β(x∗, x�∗) < tlink : c2 ← c2 + 1.

3) return c1/N and c2/N .

In our experiments, we set tlink = 170 and N = 10000,

and obtained c1/N ≈ 0.95 and c2/N ≈ 0.99. Therefore,

we estimate that RateLink
A = 0.97, as the average of the

success rates over the genuine and imposter pairs. The

run time of the attack is dominated by the run time of

computing nearby-feature preimages, that takes only a

few seconds as mentioned earlier.

b) An attack on URP-IoM: Given sp, sp�, u, and u�,

the adversary computes nearby-feature preimage vectors

x∗ and x�∗ as explained before. For some decision

threshold value tlink, the adversary computes the Pear-

son coefficient ρ = ρ(x∗, x�∗) ∈ [−1, 1] of x∗ and

x�∗. The formula for the Pearson coefficient is given as

follows:

ρ(x, y) =

�n

i=1(xi − x̄)(yi − ȳ)
�

�n

i=1(xi − x̄)2
�

�n

i=1(yi − ȳ)2
,

where x = (x1, ..., xn), y = (y1, ..., yn), x̄ =
�n

i=1 xi/n, and ȳ =
�n

i=1 yi/n.

The adversary outputs 1, if |ρ| ≥ tlink, indicating that

the feature vectors x and x� are extracted from the same

user. Otherwise, if |ρ| < tlink, the adversary outputs 0,

indicating that the feature vectors x and x� are extracted

from two different users. Following the linkability attack

on GRP-IoM, we estimate the success rate of our attack

using the previous script, but replacing β(x∗, x�∗) by

ρ(x∗, x�∗). In our experiments, we set tlink = 0.18 and

N = 10000, and obtained c1/N ≈ 0.83 and c2/N ≈
0.83. Therefore, we estimate that RateLink

A = 0.83, as

the average of the success rates over the genuine and

imposter pairs. The run time of the attack is dominated

by the run time of computing nearby-feature preimages,

that takes only a few seconds as mentioned earlier.

VII. CONCLUSION

We formalized the authentication, irreversibility and

unlikability notions under the stolen token scenario, and

proposed several attacks against GRP-IoM and URP-

IoM. We argued that both schemes are severely vul-

nerable against authentication and linkability attacks.

Based on our experimental results, we estimated 100%
success rate for our authentication attacks against GRP-

IoM and URP-IoM, 97% success rate for our linkability

attacks against GRP-IoM, and 83% success rate for our

linkability attacks against URP-IoM. We also proposed

better reversibility attacks against GRP-IoM, but they are

not practical yet.

We believe that our attacks can further be improved.

One interesting research direction would be to see the

impact of different choices of objective functions in

modelling the optimization problems in the authenti-

cation and reversibility attacks. Similarly, it would be

interesting to exploit different correlation metrics in the

linkability attacks.

Finally, we assume that adversaries are not adaptive

and they are not allowed to ask queries for data of

their choices in our attack models. This is rather a

weak adversarial model. Therefore, we expect that our

attacks can further be improved by allowing stronger

adversaries.
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